MGSC 1205 Quantitative Methods I

Slides 4 – LP II: Solver, Formulation Application and Excel

Ammar Sarhan

Minimization LP Problem

Many LP problems involve *minimizing an objective* such as *cost* instead of maximizing profit function.

Examples:

- Restaurant may wish to develop work schedule to meet staffing needs while *minimizing total number of employees*.
- Manufacturer may seek to distribute its products from several factories to its many regional warehouses in such a way as to *minimize total shipping costs*.
- Hospital may want to provide its patients with a daily meal plan that meets certain nutritional standards while *minimizing food purchase costs*.

Example: Holiday Meal Turkey Ranch

- Buy two brands of feed for good, low-cost diet for turkeys.
- Each feed may contain three nutritional ingredients (protein, vitamin, and iron).
 - ✓ One pound of **Brand A** contains:
 - \checkmark 5 ounces of protein,
 - \checkmark 4 ounces of vitamin, and
 - ✓ 0.5 ounces of iron.

- ✓ One pound of Brand B contains:
 ✓ 10 ounces of protein,
 - \checkmark 3 ounces of vitamins, and
 - $\checkmark 0$ ounces of iron.
- Minimum monthly requirement per turkey (OZ): Protein: 90, Vitamin: 48, Iron: 1.5
- ✓ Brand A feed costs ranch \$0.02 per pound, while Brand B feed costs \$0.03 per pound.
- Ranch owner would like lowest-cost diet that **meets minimum monthly intake requirements** for each nutritional ingredient.

LP formulation

- Minimize C = 2 A + 3 B (in cents)
- or C = 0.02 A + 0.03 B (in \$)
- Subject to:
 > 5 A + 10 B ≥ 90 (Protein constraint)
 > 4 A + 3 B ≥ 48 (Vitamin constraint)
 > 0.5 A ≥ 1.5 (Iron constraint)
 > A ≥ 0 , B ≥ 0 (non-negativity constraints)

Corner Point Solution Method

Corner Point Solution Method

Manufacturing Application

- Anderson Electronics is considering the production of four potential products (VCR, Stereo, TV and DVD)
- Suppose the input for all products can be viewed in terms of just three resources: electronic components, non-electronic components and assembly time.
- The composition of the four products in terms of these inputs is shown in the table below, together with the costs for the resources.
- Each resource is available in limited quantities as shown in the table.
- Due to the market condition, the number of TV produced should be greater or equal to the production of Stereo.
- Formulate the problem as an LP model, which maximizes the total profit.

	VCR	Stereo	TV	DVD	Supply
Elct. Components	3	4	4	3	4,700
Non-Elct. Components	2	2	4	3	4,500
Assembly time	1	1	3	2	2,500
Selling price	\$70	\$80	\$150	\$110	
Cost	\$41	\$48	\$78	\$56	
Profit	\$29	\$32	\$72	\$54	

- Maximize
- P = 29 V + 32 S + 72 T + 54 D
- Or: R = 70 V + 80 S + 150 T + 110 D C = 41 V + 48 S + 78 T + 56 D P = (70-41) V + (80-48) S + (150-78) T + (110-56) D
- Such that:
- \rightarrow 3 V + 4 S + 4 T + 3 D \leq 4700 (Elct. Comp. constraint)
- \geq 2 V + 2 S + 4 T + 3 D \leq 4500 (Non-Elct. Comp. constraint)
- \succ V+ S+3T+2D \leq 2500 (Ass. time constraint)
- $\succ S \leq T \text{ or } S T \leq 0 \qquad (Market constraint)$
- \succ V, S, T, D≥0 (Non-negativity constraint)

Setting up LP Problems in Excel

Formulating in Excel

- Write the LP out on paper, with the objective function and all constraints.
- Decide on cells to represent variables.
- Enter parameters of each variable in each constraint in a block of cells.

Flair Furniture					
	Τ	С			
	Tables	Chairs			
Number of Units	30.0	40.0			
Profit	\$7.00	\$5.00	\$410.00	<- Obj	ective
Constraints:					
Carpentry Hours	4	3	240.0	<=	240
Painting Hours	2	1	100.0	<=	100
Chairs Limit		1	40.0	<=	60
			LHS	Sign	RHS

Solving LP Problems Using Excel's Solver

Use "Add" constraints to enter relevant cell references for *LHS* and *RHS*.

Applications

- Marketing Application: Media Selection (p. 84)
- Transportation Problem (Module 3)
- Employee Scheduling Application: Labor Planning (p. 91)
- Financial Application: Portfolio Selection (p. 94)

(1) Marketing Application: Media Selection (p. 84)

- <u>Kitchener Electronics</u> has budgeted up to \$8,000 per week for local advertising.
- The money is to be allocated among four promotional media:
- TV spots, newspaper ads, and two types of radio advertisements.
- <u>Kitchener's goal</u>: is to reach the largest possible audience through various media.
- The following table represents the number of potential customers reached by making use an advertisement in each of the four media.
- It also provides the cost per advertisement placed and the maximum number of ads that can be purchased per week.

	Audience	Cost	Maximum Ads
Medium	Reached Per Ad	Per Ads	Per Week
TV spots	5000	\$800	12
Newspaper ads	8500	\$925	5
Prime-time radiospots	2400	\$290	25
Afternoon radio spots	2800	\$380	20

Contract arrangements require at least 5 radio spots be placed per week.
Management insists no more than \$1,800 be spent on radio Ads per week.

Mathematical formulation

- Let
- > T = # 1-minute TV spot each week
- \succ N = # full-page daily newspaper ads taken each week
- \blacktriangleright P = # 30-seconed prime-time radio spots taken each week
- \blacktriangleright A = # 1-minute afternoon radio spots taken each week
- Objective
- ✓ Maximize audience coverage =

5000T + 8500N + 2400P + 2800A

✓ Subject to

 $T \leq 12 \text{ (max TV spots/week)}$ $N \leq 5 \text{ (max newspaper ads/week)}$ $P \leq 25 \text{ (max 30-seconed radio spots /week)}$ $A \leq 20 \text{ (max 1-minute radio spots /week)}$ $800T+925N+290P+380A \leq \$8000 \text{ (weekly advertising budget)}$ $P+A \geq 5 \text{ (min radio spots contracted)}$ $290P+380A \leq \$1800 \text{ (max dollars spent on radio)}$ $T, N, P, A \geq 0 \text{ (non-negativity conditions)}$

(2) Transportation Problem

- Century Plastics operates two injection molding plants in Moncton and Winnipeg. Approximately 50% of their production is custom manufacturing for automakers in Canada and the US. This output takes priority and is shipped directly to the customer factories.
- The remaining capacity is used to make after-market parts that are sold through auto supply firms such as UAP and Canadian Tire. These products are shipped through distribution centres in Montreal, Vancouver and Cleveland.
- Estimated available capacity in the next month is 10,000 tons in Moncton and 20,000 tons in Winnipeg.
- The total requirements in Montreal, Vancouver and Cleveland are 6,000, 8,000 and 16,000 respectively.
- The shipping costs per ton are summarized in the table below:

	Montreal	Vancouver	Cleveland
Moncton	60	120	80
Winnipeg	100	60	90

How can Century meet the demands of its distribution centres in the least cost manner?

Formulation - Solution

- The decision variables are how much to ship from each plant to each warehouse.
 Let
- M_M = the number of tons made in Moncton and shipped to Montreal
- M_V = the number of tons made in Moncton and shipped to Vancouver
- M_C = the number of tons made in Moncton and shipped to Cleveland
- W_M = the number made in Winnipeg and shipped to Montreal
- W_V = the number made in Winnipeg and shipped to Vancouver
- W_C = the number made in Winnipeg and shipped to Cleveland
- The objective is to minimize costs:

Minimize $C = 60M_M + 120M_V + 80M_C + 100W_M + 60W_V + 90W_C$

- ✤ The constraints are that
 - we cannot ship more than we can make, and
 - we have to ship at least as much as we need.

 Supply
 Demand
 Non-Negativity

 $M_M + M_V + M_C \le 10,000$ $M_M + W_M \ge 6,000$ $M_M, M_V, M_C, W_M, W_V,$
 $W_M + W_V + W_C \le 20,000$ $M_V + W_V \ge 8,000$ $W_C \ge 0$
 $M_C + W_C \ge 14,000$ $W_C \ge 0$

Solution using Excel

Ιe	ext Box 5 🔹 💌	ţx.											
	A	В	С	D	E	F	G		Н		J	K	
1	Century Plastics 1	Fransporta	ation					The '	values of th	e variable	s are in cells	3 B5:G5.	
2								Thes	se are the c	ells that a	are changed	l in Solver	
3		MM	ΜV	MC	WM	WV	WC '			\sim			
4		Monc-Mtl	Monc-Var	Monc-Clev	Winn-Mtl	Winn-Van	Winn-	Clev			Obiective i	s to Minimiz	el
5	# of units shipped	6000	0	4000	0	8000	- *	3000	Total		- Total Cost		
6	Cost	60	120	80	100	60		90	2060000		H6 is the 1	Farget Cell	
7	Constraints												
8	Moncton Supply	1	1	1					10000	<=	10000		
9	Winnipeg Supply				1	1		1	18000	<=	20000		
10	Montreal Demand	1			1				6000	>=	6000		
11	Vancouver Demand	1	1			1			8000	>=	8000		
12	Cleveland Demand			1				1	_ 14000	>=	14000		
13		<u> </u>							{ĽHS	sign	RHS 🔺		
14		Co	lumn H co	ntains the	totals for	each row.	Totals	are					
15		calculated using In Solver, the right											
16		=SUMPRODUCT(B?:G?,\$B\$5:\$H:\$5) where ? Is hand side RHS of											
17		Greplaced with the number for that row. These cells O the constraint is											
18		represent the left hand side (LHS) of the constraints called constraint.											
19		in	Solver (ce l	ll referenc	:e).								
20		00000			8007-10000000	*****	*****						
21		0.000	**********************************	***********************************		***************************************	*******************						

Answer report

Target Cell (Min)

Cell	N	lame	Original Value	Final Value
\$H\$6	Cost Total		0	2060000

Adjustable Cells

Cell	Name	Original Value	Final Value
\$B\$5	# of units shipped Monc-Mtl	0	6000
\$C\$5	# of units shipped Monc-V an	0	0
\$D\$5	# of units shipped Monc-Clev	0	4000
\$E\$5	# of units shipped Winn-Mtl	0	0
\$F\$5	# of units shipped Winn-V an	0	8000
\$G\$5	# of units shipped Winn-Clev	0	10000

C onstraints

Cell	Name	Cell Value	Form ula	Status	Slack
\$H\$8	Moncton Supply Total	10000	\$H\$8<=\$J\$8	Binding	0
				N ot	
\$H\$9	Winnipeg Supply Total	18000	\$H\$9<=\$J\$9	Binding	2000
\$H\$10	Montreal Dem and Total	6000	\$H\$10>=\$J\$10	Binding	0
\$H\$11	V ancouver Demand Total	8000	\$H\$11>=\$J\$11	Binding	0
\$H\$12	Cleveland Dem and Total	1 4000	\$H\$12>=\$J\$12	Binding	0

(3) Employee Scheduling Application: Labor Planning (91)

<u>Atlantic Bank of Canada</u> now employs <u>12</u> full-time tellers. Part-time employees (four hours per day) are available.

- ✓ Part-timers earn \$4 per hour (or \$16 per day) on average.
- ✓ Full-timers earn \$50 per day in salary and benefits, on average.
- Full-timers work from 9am to 5pm
 - Allowed 1 hour for lunch.
 - Half of full-timers eat at 11 A.M. and other half at noon.
 - Full-timers thus provide 35 hours per week of productive labor time.
- Part-times can start anytime between 9am and 1pm; but hour limited to a maximum of 50% of day's total requirement.

st	Require	ed labor hours:
	Time Period	# of Tellers Required
	9am - 10am	10
	10am -11am	12
	11am - Noon	14
	Noon - 1pm	16
	1pm - 2pm	18
	2pm - 3pm	17
	3pm - 4pm	15
	4pm - 5pm	10

- Objective: Minimize total daily personnel cost
 - F = full-time tellers
 - P_1 = part-timers starting at 9 A.M. (leaving at 1 P.M.)
 - P_2 = part-timers starting at 10 A.M. (leaving at 2 P.M.)
 - P_3 = part-timers starting at 11 A.M. (leaving at 3 P.M.)
 - P_4 = part-timers starting at noon (leaving at 4 P.M.)
 - P_5 = part-timers starting at 1 P.M. (leaving at 5 P.M.)

Available Labor Hours

Mathematical formulation

Objective

✓ Minimize total daily personnel cost =

 $50 F + 16 (P_1 + P_2 + P_3 + P_4 + P_5)$

✓ Constraints (Subject to)

For each hour, the available labour must equal to the required labour hours.

 $\begin{array}{ll} F+P_{1} &\geq 10 \ (9 \ am-10 \ am \ needs) \\ F+P_{1}+P_{2} &\geq 12 (10 \ am-11 \ am \ needs) \\ \frac{1}{2} F+P_{1}+P_{2}+P_{3} &\geq 14 \ (11 \ am-noon \ needs) \\ \frac{1}{2} F+P_{1}+P_{2}+P_{3}+P_{4} &\geq 16 \ (noon-1 \ pm \ needs) \\ F+P_{2}+P_{3}+P_{4}+P_{5} &\geq 18 (1 \ pm-2 \ pm \ needs) \\ F+P_{3}+P_{4}+P_{5} &\geq 17 (2 \ pm-3 \ pm \ needs) \\ F+P_{4}+P_{5} &\geq 15 (3 \ pm-4 \ pm \ needs) \\ F+P_{4}+P_{5} &\geq 10 (4 \ pm-5 \ pm \ needs) \end{array}$

Only 12 full-time tellers are available, so

$F \le 12$

Part-time hours cannot exceed 50% of total hours required each day, so $4(P_1+P_2+P_3+P_4+P_5) \le 0.50(10+12+14+18+17+15+10) = 56$ F, P₁,P₂,P₃,P₄,P₅ ≥ 0 (non-negativity conditions)

(4) Financial Application: Portfolio Selection (p. 94)

- <u>International City Trust (ICT)</u> invests in short-term trade credits, corporate bonds, gold stocks, and construction loans.
- ICT has \$5 million available for immediate investment and wishes to do two things:
 - maximize interest earned on investments made over next six months
 - satisfy diversification requirements as set by board of directors.
- Investment Possibilities:

Investment	Interest earned%	Maximum investment (\$ Millions)
Trade credit	7%	1.0
Corporate bonds	11%	2.5
Gold stocks	19%	1.5
Construction loans	15%	1.8

✓ Board specifies at least 55% of funds invested must be in gold stocks and construction loans.

✓ No less than 15% be invested in trade credit.

Mathematical formulation

- Let
- \succ T = dollars invested in trade credit
- \blacktriangleright B = dollars invested in corporate bonds
- \succ G = dollars invested in gold stocks
- \succ C = dollars invested in construction loans
- Objective
- ✓ Maximize dollars of interest earned =

0.07 T + 0.11 B + 0.19 G + 0.15 C

Subject to

 $\begin{array}{l} T \leq 1,000,000 \quad (max \ investment \ in \ T) \\ B \leq 2,500,000 \quad (max \ investment \ in \ B) \\ G \leq 1,500,000 \quad (max \ investment \ in \ G) \\ C \leq 1,800,000 \quad (max \ investment \ in \ C) \\ G + C \geq 0.55 \quad (T + B + G + C) \quad (Board \ condition \ 1) \\ T \geq 0.15 \quad (T + B + G + C) \quad (Board \ condition \ 2) \\ T + B + G + C \leq 5,000,000 \quad (max \ dollars \ invested) \\ T, B, G, C \geq 0 \quad (non-negativity \ conditions) \end{array}$